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The Laplace equation was solved in the interelectrode space for shaped electrodes (two-dimen­
sional case) by the method of finite differences (FDM), Galerkin's method (GM), and colloca­
tion method (eM). A comparison shows that for electrode shapes with a continuously changing 
surface (continuous first and second derivatives), the solutions by all three methods are equi­
valent, giving identical distribution of local current densities on the electrode surface . The use 
of GM and eM is, however, not practical because of high requirements on the computer time 
and memory as compared with FDM. Moreover, the GM and eM fail in the case of disconti­
nuities in the electrode shape . 

The solution of Laplace's equation in an interelectrode space delimited by shaped 
electrodes is carried out by approximating the derivatives by difference formulas 
and using the method of finite differences in the given space1 •2 • In engineering pro­
blems, partial differential equations are often solved by variation methods3

; which 
lead relatively rapidly to a sufficiently accurate result. For an interelectrode space 
delimited by shaped electrodes, Galerkin's method4 using goniometric functions 
(series in terms of sin nx and cos nx) is suitable . The same functions can be used 
also in the collocation method. Our aim was to compare the individual methods 
from the point of view of accuracy of results, required time and memory of the 
computer. 

MODEL SYSTEM 

We shall solve Laplace's equation (l) in two-dimensional space delimited by electrodes 
whose form is given by curves cx(x) and P(x) (Fig. 1). The potentials in solution 
at the electrode surface, <fJA and <fJK, are given by functions ha(x) and hp(x). The system 
is symmetrical or isolated in sections x = a and x = b. Hence, the Laplace's 
equation has the form 

(1) 

Part XIV in the series Flow Electrolyzers; Part XIII: This Journal 44, 1857 (1979). 
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Solution of Laplace's Equation 1457 

with boundary conditions for ex(x) and P(x) : 

(2a,b) 

(2c) 

The functions ex, p, ha , and h~ are symmetrical in the points a and b: 

ex'(a) = ex'(b) = p'(a) = P'(b) = h~(a) = h~(b) = hp(a) = hp(b) = O. (2d) 

A transformation of the interelectrode space to a rectangle appears to be the simplest 
procedure . We use the following transformation: 

~ = x, I] = (y - ex(x))f(P(x) - ex(x)) , 

cp(x, y) = I/I(~ , 1]) . 

For the derivatives we then obtain 

Ocp 

oy 

Ocp 01/1 01/1 01] 
-=-+ - ­
Ox a~ 01] ax 

Eq. (1) is now rewritten for the rectangle a ~ ~ ~ b, 0 ~ '1 ~ 1 in the form: 

with boundary conditions 
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Owing to the symmetry, we have 

hence for e = a and e = b: 

et'(e) = f3'(e) = h~(e) = h,,(e) = o. 

Eq. (5) can be rewritten in the form 

~~ 2 ~ - - [et'(x) (1 - tI) + f3'(x) tI] - - (f3(x) - a(x)t2. 
ae atl f3(x) - et(x) atl 

. [(f3(x) - et(x)) (1 - tI) al/(x) + (f3(x) - a(x)) tI f31/(x) -

-2(f3'(x) - et'(x)) (et'(x) (1 - tI) + f3'(x) tI)] = o. 

Method of Finite Differences 

(6d) 

(6e) 

(7) 

The derivatives in Eq. (7) are replaced by difference formulas. Iterative calculation 
of potential values in the grid points is carried out by the relaxation method. After 
the calculation of the potentials in the space between the electrodes, the--current 
densities on the electrode surface are calculated from Eqs (22a - c) . The detailed 
procedure was described in ref. 1. 

y (J(x) 

1 

a(x) 

p a 
- x 

FIG. 1 

Scheme of Interelectrode Space Limited 
by the Contours iX(x) and P(x). 
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Galerkin's Method 

The basic idea consists in finding a function g, which fits the given boundary condi­
tions, and then in introducing the function 

w = 1/1- g. (8) 

We define the following operator: 

(9) 

and thus we can write Eq . (5) with the use of(8) in the form 

Aw = -Ag (10) 
with boundary conditions 

w(~ , 0) = 0 , w(~, 1) = 0 (lJa,b) 
and for 

~ = a or ~ = b : ~ + aw 01 = 0 . 
a~ 131] ax 

(lJc) 

The latter equation is simplified by using the symmetry condition Ol]/ox = 0 to 

( Ow/O~)a .b = 0 (lId) 

and the validity of (6) is preserved. The auxiliary function g must be chosen so as 
to fulfil the boundary conditions for 1/1. In our case it is possible to use, for example, 
the function 

(12) 

which for I] = 0 fulfils the boundary condition (2a) and for I] = 1 the boundary 
condition (2b). Further it follows from the symmetry condition (2d) that for ~ = a 

and ~ = b is ag/a~ = 0, whereby the boundary condition (2c) is fulfilled . 
The solution for w will be sought in the form 

N N 

w(~, IJ) = L L ak .lck,I(~' 1]), (13) 
k = I 1= I 

where Ck,I(~' IJ) are the so-called base functions which must identically fulfil the 
boundary conditions (11a ,b), and ak,l are coefficient to be determined. The base 
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functions can be, for example, chosen as products of goniometric functions: 

clr.,I(~,17) = cos --(k - 1)1t sin(1t117) , (~ - a ) 
b - a 

(14) 

where k, I = 1,2,3 " .N. The total number of unknown coefficients alt,l is N 2
• 

These are determined according to the Galerkin's method so that the approximation 
of W, Eq. (13), is substituted into the partial differential equation (10) and this is 
scalarially multiplied in tum by the functions cm,n(~' 17), m, n = 1,2, .. ,' N. Thus, 
we obtain N 2 equations for N 2 unknowns ak,l' This system of equations can be written 
in the form 

N N 

L L ak.l(Ack • l ; cm,n) = -(Ag; Cm,n) , (I 5) 
Jr.= 11= 1 

where m, n = 1,2, ... , N. The scalar product on the left side has the form 

(16) 

and the scalar product on the right side of (15) can be written analogously. Owing 
to a suitable choice of t~e base functions, integration of Eq. (16) with respect to 17 
can be relatively easily carried out. The method of calculating the scalar products 
on the left side of Eq. (15) is as follows: -, , 

a) Calculation of coefficients in differential operator A. 

ct'(x) - 17(f3'(x) - ct'(x)) 
f3(x) - ct(x) 

~= 1 
ay f3(x) - ct(x) , 

ct"(x) + 2ct'(x) f3'(x) - ct'(x) + 
f3(x) - a(x) (f3(x) - ct(x))2 

(16a) 

(16b) 

+ 17 [2 (f3'(x) - a'(x))2 _ f3"(X) - a" (x)] (16c) 
f3(x) - a(x) f3(x) - a(x) 

(txY + (~y = (f3 - at2 [1 + (ct'(l - 17) + f3'17)2] . (16d) 
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Now the operator A can be expressed in the form 

where 

f3' - a' (f3' - a')2 
Pl(~) = 2a' (f3 _ ay' P2(~) = f3 - a ' (17b,c) 

(17d) 

(17e,f) 

rl(~)=2 -- - - -, (
f3' - a')2 f3" - a" 
f3 - a2 f3 - a 

(17g) 

a" f3' - a' 
r2(~) = - -- + 2a' - -- . 

f3 - a (f3 - a)2 
(17h) 

By substituting Eq. (14) into the formula for A we obtain: 

ACk 1(~' r,) = - --- cos -- (k - 1) 1t sin (tr,1t) -(k - 1)2 1t
2 (~ - a ) 

' . (b - aY b - a 

(18) 
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Similarly by substituting (12) into (17 a) we obtain 

Ag(~, 1]) = h~(~) + 2q2(~)(h~(~) - h~(~)) + r2(~)(h~(~) - h~(~)) + 

+ I](h~(~) - h~(~)) + 2ql(~) [hp(e) - h~(~) + rl(~) (h~(~) - h~(~))] . (19) 

The following expression for the scalar product (Ack ,l; cm,n) can be obtained by substi­
tuting Eq, (18) into (16): 

+ l[2(1 _ b ) [cos (1t(l + n) - 1 _ cos (1t(l - n) - 1J (J') _ l/2b 1t2 (~) + 
"l I,n (I + nY (I _ ny PI" 4" I,n PI 

+ [2(1 _ b ) [COS (1t(1 + n)) _ cos ((I - n) 1t)J (J') + 12b (~_~) (~)_ 
I,n (I + nY (I _ n)2 P2 .. I,n 4/2 6 P2 

_ !(1 _ bl ,n) [COS (1t(: : :)) - 1 _ cos (1t(: = :) -1] r2(~) - 1(1 "- bl,n)' 

, [cos(1t(l + n» _ cos (1t(l - n))] rl(~) _ tbl,n rl(~)} cos (~ - a (k ~' 1) 1t). 
I+n I-n b-a 

. cos (~ - a (m _ 1) 1t)d~ + fb {(k - 1) 11t (1 _ <\n) (COS «I + n)1t) - 1 _ 
b-a a b-a I+n 

_ cos «I - n) 1t) - 1) q2(e) + (k - 1) 11t (1 _ bl,n) (COS ((l + n)1t) _ 
I-n b-a l+n 

_ cos ((l - n) 1t») (~) + (k - 1) 1t b (e)} sin (~ - a (k _ 1) 1t) , 
I-n ql 2(b-a) I,nql b-a 

. cos -- (m - 1) 1t d~ . (~ - a ) 
b - a 

(20) 

The Kronecker's symbol bi,i is defined as follows: bi,i = 0 for i =1= j, bi,i = 1 for 
i = j . From Eq. (19) we obtain in a similar way expressions for the scalar products 
(Ag; cm,n): 
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Solution of Laplace's Equation 1463 

. cos -- (m - 1) rc de - - - {h;;(e) - h~(De) + (e- a ) cos(nrc)f
b 

b - a nrc • 

Integration in (20) and (21) is carried out numerically; the integration step h must be 
by an order of magnitude smaller than the smallest period: h ~ (b - a)/N. By 
substituting Eqs (20) ad (21) into (15) we obtain in total N 2 equations for N 2 unknown 
coefficients ak," The solution of this system of equations by an arbitrary finite or 
iteration method leads to the sought value of ak ," 

The current densities on the electrode surface are calculated from the equation 

(22a) 

hence for an electrode whose shape is given by the curve aCe): 

and for the other electrode of the shape given by pee): 

(gradip)n,1l = (1 + p'2rl/2[(~) 1 + p,2 - (at/!) p,].. (22c) 
. al'J II p - a ae II 

The latter two equations give the values of normal components of the gradients 
except for their sign. Provision must be made that the anodic current density be 
positive and the cathodic one negative. 

Collocation Method 

In this method, all unknown functions are approximated by suitable functional rela­
tions with unknown multiplicative coefficients. The solution of the corresponding 
differential equation is then reduced to the solution of a system of linear equations 
for the mentioned coefficients. In solving the Laplace's equation, we start from 
Eqs (9), (10), (12), and (13) with the corresponding boundary conditions. Approxima­
tions for ck , ' are chosen in the form (14); by differentiating we obtain 
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-' = 1tt cos -- (k - 1) 1t cos (l'11t) , OCk I [e - a ] 
0'1 b - a 

(23a) 

(23b) 

(23c) 

02Ck " _ (k - 1) ~2 cos [e - a (k _ 1) 1t] sin (1'11t). 8fl- = (b - a) b - a 
(23d) 

By substituting these expressions into (10) and using (13) we obtain N2 linear equa­
tions for N 2 multiplicative constants ak,l' This system of equations will be solved 
by the Gauss' method (the method of solution is arbitrary). 

The number of collocation points in the direction of e or '1 is equal to N. The col­
location points will be defined by the conditions 

cos G = : N1t) = 0 for a ~ e ~ b, sin [(N + 1) I11tJ = 0 for 0 ~ 11 ~ 1, 

(Ua,b) 

representing zero points of approximation functions whose order is by 1 higher 
(N + 1) than for the functions used in the approximation. It follows from the theory 
that with this choice of the collocation points the solution will be most accurate 
in the sense of least squares of deviations between the exact and approximate solu­
tions. Since Eq. (24b) has N + 2 solutions, we drop two arbitrary points. To involve 
the boundaries e = a and ~ = b in the calculation, we replace two arbitrary colloca­
tion points from the solution ofEq. (24a) by points for e = a and ~ = b. The current 
densities on the electrode surface are calculated from (22a-c); the necessary values 
of the derivatives are obtained from Eq. (8) by combining with (13) and (14) and 
rearranging: 

(25a) 

- = h~(e) - hi~) + L L ak ,)1tl cos -=- (k - 1) 1t cos (1l11t) . 0'" N N (~a ) 
0'1 k = 1 1=1 b - a 

(25b) 
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RESULTS AND DISCUSSION 

Calculations were carried out for a two-dimensional electrolyser whose one electrode 
shape corresponds to the function P(x) = kl - k2 cos [(x - a) n/(b - a)] and the 
second to cx(x) = O. This was chosen because of the continuity of both functions and 
their derivatives and because the cell form resembles the Hull's cell. We cons idered 
the primary current distribution, hence constant potentials on both electrodes, 
hp{x) = 1 and h~{x) = O. The current densities at P(x) are positive (anode) and at cx(x) 
negative ( cathode). 

In Table I are shown the results for current densities in different points on the 
electrodes calculated with the three methods for P{x) = 2·4-1·8 cos (nX/3'6), 
where X = x-a. In Table II analogously for P(x) = 6,0-5-4 cos (nX/3·6) . In the 
case of FDM we used 7 x 7 and 19 x 19 points, with GM 7 x 7 functions, and with 
CM 7 x 7 and 11 x 11 functions. We assumed "E = 1 n - I cm - 1. The computer was of 
the type ICL 4-72. It is seen that in the first case all three methods give practically 
the same results. In the second case, where the electrode was more steep, only the 
FDM gives acceptable results. This method is especially suitable for calculations 
where the polarization is taken into account , since the computer time increases 

TABLE I 

Values of Current Densities on the Surface of Shaped Anode (P(x) = 2·4- 1·8 cos (7tX/3'6» 
and Cathode (ct(x) = 0) Calculated by Different Methods for Different N Values 

FDM GM CM 

x P(x) N= 19 N = 7 N = 7 N = 11 N = 7 
- - --- -

iN,1I - iN,a iN ,1I -iN ,a. iN,1I -iN ,~ iN ,1I -iN,a {N ,1l - iN ,Q. 

0·0 0·60 2·071 1'509 2·061 1-496 2·013 ),508 2·019 1·510 1·996 1·510 
0·6 0·84 1·293 1'226 1·331 1·221 1'196 1·173 1·323 1'227 1'335 1·225 
1·2 1'50 0·603 0·842 0·607 0·838 0'579 0·809 0·694 0·844 0·762 0·833 
1'8 2-40 0 '294 0·611 0'283 0·610 0·305 0·615 0'314 0·613 0·316 0·608 
2·4 3·30 0'139 0'486 0·130 0 '490 0'171 0'502 0'152 0'489 0·127 0'490 
3·0 3·96 0·065 0'425 0'059 0·431 0·076 0·434 0'075 0·428 0 '076 0·429 
3-6 4'20 0·043 0·410 0·038 0'413 0'052 0·409 0·050 0'409 0·052 0'411 

Comp.time 270 47 266 79 
s 

Compo 
memory 67 61 94 163 64 
KBYTE 
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only by 10% (ref. l
). With GM and eM, if the polarization were taken into account, 

the whole calculation would have to be repeated for several times and thus the 
computer time would increase by an order of magnitude. The accuracy of GM 
and eM could be increased by increasing substantially the number of functions, 
however this would result in extreme requirements regarding the computer time 
and memory. 

The calculation was further carried out also for P(x) = 0·6 + 0'5x, i.e., for an elec­
trode which has in the points x = a and x = b undefined derivatives P'(x) and 
P"(x). Acceptable results were obtained only with FDM, whereas with GM and eM 
oscillations of the potential and current density values took place owing to disconti­
nuities on the boundaries. 

CONCLUSIONS 

In the case of electrode shapes with continuous first and second derivatives in all 
points of the surface, the three methods, FDM, GM, and eM are equivalent with 
respect to the obtained results. In other cases ony the finite difference method can be 

TABLE II 

Values of Current Densities on the Surface of Shaped Anode (ft(x) = 6'0-5·4 cos (7tX/3'6» 
and Cathode (cx(x) = 0) Calculated by Different Methods and for Different N Values --

FDM OM CM 

x ft(x) N= 19 N=7 N=7 N= 11 N= 7 

iN,p -iN,~ iN,p -iN ,a. iN,p -iN,~ iN,p -iN,~ iN,p -jN,~ 

0'0 0·60 2'698 1·381 2·912 1·266 2'136 1'408 2·475 1·385 2-425 1'383 
0·6 1·32 0·660 1'035 0·701 1·037 0·432 0·973 1'070 1-033 0'100 1-026 
1'2 3-30 0' 157 0·668 0·113 0'671 0·259 0'642 0·665 0·657 3'791 0·581 
1'8 6·00 0·025 0·486 ~'005 0·497 ~'059 0'489 0·190 0·481 ~'205 0·412 
2'4 8·70 0·001 0·394 ~'016 0'411 0'073 0·403 ~'213 0·392 ~'392 0'339 
3·0 10·68 0·000 0·350 ~'005 0'370 ~'048 0·353 ~·007 0·346 ~'044 0·296 
3-6 11·40 0'000 0'337 ~'001 0·358 0'021 0·332 ~'001 0'333 ~'004 0·284 

Comp. time 360 47 266 79 
s 

Compo 
memory 67 61 94 163 64 
KBYTE 
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successfully used. The latter has also the least requirements on the computer memory 
and, if we consider the accuracy of the results, also on the computer time. At a con­
stant number of points in the grid, the computer time becomes longer with increasing 
values of f3'(x) and f3"(X) (Tables I and II, results for N = 19). The collocation 
method turned out to be most rapid one (with constant number of functions), how­
ever the results were worst: the current densities on the electrode surface f3(x) oscil­
lated markedly and only after increasing the number of functions to 11 the results 
were acceptable in the region where the electrodes were relatively close to each other. 
Nevertheless, occasionally an opposite sign of the current density was obtained, which 
did not correspond to the respective electrode and hence had no physical sense . 
With the GM, a substantial part of the computer time is consumed in numerical 
integration ofEqs (20) and (21). Therefore, only the finite difference method is recom­
mended for similar calculations. 
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