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The Laplace equation was solved in the interelectrode space for shaped electrodes (two-dimen-
sional case) by the method of finite differences (FDM), Galerkin’s method (GM), and colloca-
tion method (CM). A comparison shows that for electrode shapes with a continuously changing
surface (continuous first and second derivatives), the solutions by all three methods are equi-
valent, giving identical distribution of local current densities on the electrode surface. The use
of GM and CM is, however, not practical because of high requirements on the computer time
and memory as compared with FDM. Moreover, the GM and CM fail in the case of disconti-
nuities in the electrode shape.

The solution of Laplace’s equation in an interelectrode space delimited by shaped
electrodes is carried out by approximating the derivatives by difference formulas
and using the method of finite differences in the given space!*2. In engineering pro-
blems, partial differential equations are often solved by variation methods®; which
lead relatively rapidly to a sufficiently accurate result. For an interelectrode space
delimited by shaped electrodes, Galerkin’s method* using goniometric functions
(series in terms of sin nx and cos nx) is suitable. The same functions can be used
also in the collocation method. Our aim was to compare the individual methods
from the point of view of accuracy of results, required time and memory of the
computer.

MODEL SYSTEM

We shall solve Laplace’s equation (1) in two-dimensional space delimited by electrodes
whose form is given by curves (x) and B(x) (Fig. 1). The potentials in solution
at the electrode surface, ¢, and ¢, are given by functions h,(x) and hy(x). The system
is symmetrical or isolated in sections x = a and x = b. Hence, the Laplace’s
equation has the form

plox* + d*¢foy* =0 (1)

* Part XIV in the series Flow Electrolyzers; Part XIII: This Journal 44, 1857 (1979).

Collection Czechoslov. Chem. Commun. [Vol. 45) [1980]



Solution of Laplace’s Equation 1457

with boundary conditions for a(x) and B(x):
oa() = h(x), ox(x) = ), (2a.b)
(90[ox), = (dp[dx), = 0. (2¢)
The functions «, f, h,, and hy are symmetrical in the points a and b:
w(a) = () = Bla) = F(B) = hifa) = hi(b) = hyla) = hj(b) = 0. (24)

A transformation of the interelectrode space to a rectangle appears to be the simplest
procedure. We use the following transformation:

E=x, n=(y—o«x))(B(x) - a(x)), (3a,b)
o(x, y) = W(&n). (3¢)

For the derivatives we then obtain

G _ov ovon »
dox o0& dan 0x
2 2 2 2 2 2
Fo_ P P Py (oN oo "
ax*  0F? & on dx  on* \0x on ox*
2 2, 2
o _avar 0o oy n)t o)
oy ondy  ay*  on* \dy

Eq. (1) is now rewritten for the rectangle s < ¢ < b,0 < < 1 in the form:
2, 2 2 2 N 2 2
_5__!//+M ai +@ +26‘/"l'7+'3_‘/’a_2=0 (5)
& on* | \ox

3y 0t dn dx  on ox?
with boundary conditions

n=0: YEn) =h(&); n=1: Y(&n) = hy(§), (6a,b)

x=a, x=b: Yot + (ay|on) dnfox = 0. (68
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Owing to the symmetry, we have
(onfox), = (dnfox), = 0,
hence for ¢ = g and & = b:
«(§) = B(£) = hof) = hy(€) = 0.
Eq. (5) can be rewritten in the form

3%y

P2 P (o) ) 11+ (D0 )+ B -

_v 2
0E an B(x) — afx)
[(BG) = a(x)) (1 = m) @"(x) + (B(x) — a(x)) n B"(x) =

2B (x) = a(x) (@(x) (1 = m) + B(x)n)] = 0.

Method of Finite Differences

[(x) (1 = n) + B(x) ] - %(ﬂ(X) ~ a(x))"?

)

The derivatives in Eq. (7) are replaced by difference formulas. Iterative calculation
of potential values in the grid points is carried out by the relaxation method. After
the calculation of the potentials in the space between the electrodes, the~current
densities on the electrode surface are calculated from Eqs (22a—c). The detailed

procedure was described in ref.!.

y Bx)

arx) FiG. 1

b by the Contours a(x) and f(x).

Scheme of Interelectrode Space Limited
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Galerkin’s Method

The basic idea consists in finding a function g, which fits the given boundary condi-
tions, and then in introducing the function

w=y —g. (8)

We define the following operator:

P 2 2 2 2 2
A=—z+a_z ?_’7 +€’1 +2a‘aﬁ+ia_t’_ (9)
082 an* | \ox oy ot on ox  an ox?

and thus we can write Eq. (5) with the use of (8) in the form

Aw = —Ag (10)
with boundary conditions
w(E0) =0, w(E1)=0 (11a,b)
and for
E=a or §=b:aw+ﬂa—"=0. (11¢)

g an éx
The latter equation is simplified by using the symmetry condition d5/dx = 0 to

(9w]0g),» = 0 (11d)

and the validity of (6) is preserved. The auxiliary function g must be chosen so as
to fulfil the boundary conditions for . In our case it is possible to use, for example,
the function

g(&m) = nhy(&) + (1 = n) hy(£) (12)

which for n = 0 fulfils the boundary condition (2a) and for n = 1 the boundary
condition (2b). Further it follows from the symmetry condition (2d) that for & = a
and ¢ = b is dg/o¢ = 0, whereby the boundary condition (2¢) is fulfilled.

The solution for w will be sought in the form

w(&, 1) =k§l ‘glak.lck.l(‘f’ n), (13)

where ¢, (&, ) are the so-called base functions which must identically fulfil the
boundary conditions (I7a,b), and a,, are coefficient to be determined. The base
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functions can be, for example, chosen as products of goniometric functions:

(& 1) = cos (i —a

(k—=1) n)sin (mctn), (14)

—a

where k,1 = 1,2,3...N. The total number of unknown coefficients a, , is N2,
These are determined according to the Galerkin’s method so that the approximation
of w, Eq. (13), is substituted into the partial differential equation (10) and this is
scalarially multiplied in turn by the functions ¢, (& n), m,n = 1,2, ..., N. Thus,
we obtain N2 equations for N2 unknowns a, ;. This system of equations can be written
in the form

i iak.l(/‘tck.li Cm.n) = —(Ag; cm,n) > (15)

k=11=1

where m, n = 1,2, ..., N. The scalar product on the left side has the form

r" [ (Aey ) e de dn (16)

g=a Jn=0

and the scalar product on the right side of (15) can be written analogously. Owing
to a suitable choice of the base functions, integration of Eq. (16) with respect to n
can be relatively easily carried out. The method of calculating the scalar products
on the left side of Eq. (15) is as follows: ’

a) Calculation of coefficients in differential operator A.

I _ () = (B 0) — () )
ox B) —a(d) (164)

o _ L __ (16b)

oy ) - a()’
In_ @) gy FE ()
dx? ﬁ(x) _ a(x) + 2 ( )(ﬂ(X) _ a(x))z +

PR e

(9&)2 + (Z_ZJ)Z =(B—a) 2 [L + («(1 — 1) + Bn)?]. (16d)

0x
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Now the operator A can be expressed in the form

G )'1+Pz(€)n2+pa(é))ai,; +

+ 2(q,(&) n + a,( C)) + (ry(&) n + r(8)) —'I~ (170)
where
= 2a’ 'BI ﬁ - c
P =2 =m0 = (57 . (175.0)
ps(€) = (l;_% , (17d)
2= -2 00 (176.9)
s S 'y

{® 2(13—#) f-a’ (176)
@ =--* 4y k=2 (17h)

p—a /f—oz)2

By substituting Eq. (14) into the formula for A we obtain:

- (k=1 "2 €= 80 1)) sin (Inx
Ack,l(é) ’I? = - (b - a)2 (b _ a(k 1) ) (l’T )
— [p:(&) m + pa(E) n* + ps(£)] 7?17 cos (% (k—=1) n) sin (Inm) —

~ @)+ 0 5D sin (22— 1w os ) +

+ [r(&) n + ry(&)] In cos (i : :(k -1) n) cos (Inm) . (18)
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Similarly by substituting (12) into (17a) we obtain
Ag(&,n) = (&) + 2q2(8) (hy(&) — haf€) + ra(8) (he(8) = hal8)) +
+n(hg(8) — hi(9) + 2a,(8) [1p(8) = hal&) + (&) (e(8) — ha(E)] - (19)

The following expression for the scalar product (Ac, ; ¢ ) €an be obtained by substi-
tuting Eq. (18) into (16):

ey _(k=1m? L
(Aex,5 Cmn) = (b — a) Spe,mOtn + J.{ 5 81,0 P3(€) +

LR - 6 [cos (tgl:”r)xZ) -1 _cos (n((ll_—nr;)z) - 1] pi(&) = 26,77 py(&) +
4= 8.) [cos(gnj—l n+)2n)) B Cos((l(l— _n;z) n)] (&) +1 5”< - %’) pa(E) —
Rl GEF (RN
[ sG],y - oo eos (E=2 e 0 w).
- (i 2 l)n)df N J {( _1) ”‘(1 )(cos((llin'?n) -1
cos(( 1_—")” 7 — 1>q2( 9+ (kb—_ll LI (cos (I(l+ +nn)1t)

_cos((1—n) "))ql(é) + (k_—l)"(slm ql(i)} sin (i : : (k=1) “>~

l—n 2(b — a)

eos (0 0m — ) w) e (20)

The Kronecker’s symbol &, ; is defined as follows: d; ; = 0 for i % j, §;; = 1 for
i = j. From Eq.(19) we obtain in a similar way expressions for the scalar products
(45 Cmn):
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(4 ) = =2 (42) 1 20.(004E) ~ D + 7(6) )~ RO

. cos (i “Im—1) rr) de - “’i}@ J':’{h;;(c) - h(o8) +

+ 20,0 1) ~ K@+ r(© DO — hO) eos (52 0m ~ ) x)az. (21)

—-a

Integration in (20) and (21) is carried out numerically; the integration step h must be
by an order of magnitude smaller than the smallest period: h < (b — a)/N. By
substituting Eqs (20) ad (21) into (15) we obtain in total N* equations for N unknown
coefficients a, ;. The solution of this system of equations by an arbitrary finite or
iteration method leads to the sought value of a, .

The current densities on the electrode surface are calculated from the equation
iy = — g (grad ), (22)

hence for an electrode whose shape is given by the curve a(£):

(e ghp = 1+ o) [(B) L (W) ] o

). B—o o

and for the other electrode of the shape given by B(&):

_ 12\ 1/2 ép_ 1+ﬂ’2_ % "
B R T

The latter two equations give the values of normal components of the gradients
except for their sign. Provision must be made that the anodic current density be
positive and the cathodic one negative.

Collocation Method

In this method, all unknown functions are approximated by suitable functional rela-
tions with unknown multiplicative coefficients. The solution of the corresponding
differential equation is then reduced to the solution of a system of linear equations
for the mentioned coefficients. In solving the Laplace’s equation, we start from
Egs (9), (10), (12), and (13) with the corresponding boundary conditions. Approxima-
tions for ¢, , are chosen in the form (14); by differentiating we obtain
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%t _ i cos [5 LY n] cos (In) , (23a)

an b—a
% = — n2I cos [i = :(k -1 n] sin (In) . (23b)
Z;caé _ —n;l(_ka— D gin [i ~ %k - 1) n] cos (Inm), (23¢)
%1 - ((kb__—lz)fz“’s [% (k= 1) 1::| sin () . (23d)

By substituting these expressions into (10) and using (13) we obtain N? linear equa-
tions for N2 multiplicative constants a, ;. This system of equations will be solved
by the Gauss’ method (the method of solution is arbitrary).

The number of collocation points in the direction of & or 5 is equal to N. The col-
location points will be defined by the conditions

cos(i—aNn)=0 for a<¢<b, sin[[N+1)ngn]=0 for 0<n <1,
—a

(24a,b)

representing zero points of approximation functions whose order is by 1 higher
(N + 1) than for the functions used in the approximation. It follows from the theory
that with this choice of the collocation points the solution will be most accurate
in the sense of least squares of deviations between the exact and approximate solu-
tions. Since Eq. (24b) has N + 2 solutions, we drop two arbitrary points. To involve
the boundaries £ = a and ¢ = b in the calculation, we replace two arbitrary colloca-
tion points from the solution of Eq. (24a) by points for & = a and & = b. The current
densities on the electrode surface are calculated from (22a—c); the necessary values
of the derivatives are obtained from Eq. (8) by combining with (13) and (14) and
rearranging:

=) + (1= ) () (23)

Z%f = hg(&) — hy(£) +k§1 lZNZ‘ak,,TrI cos (i : :(k -1 n) cos (Inw) . (25b)
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RESULTS AND DISCUSSION

Calculations were carried out for a two-dimensional electrolyser whose one electrode
shape corresponds to the function B(x) = k, — k, cos [(x — a) n(b — a)] and the
second to a(x) = 0. This was chosen because of the continuity of both functions and
their derivatives and because the cell form resembles the Hull’s cell. We considered
the primary current distribution, hence constant potentials on both electrodes,
hg(x) = 1 and hy(x) = 0. The current densities at f(x) are positive (anode) and at a(x)
negative (cathode).

In Table I are shown the results for current densities in different points on the
electrodes calculated with the three methods for B(x) = 2:4—1-8 cos (nX/[3-6),
where X = x — a. In Table II analogously for B(x) = 6:0—5-4 cos (nX[3-6). In the
case of FDM weused 7 x 7and 19 x 19 points, with GM 7 x 7 functions, and with
CM 7x7 and 11 x 11 functions. We assumed »g = 1 Q™' cm™'. The computer was of
the type ICL 4—72. It is seen that in the first case all three methods give practically
the same results. In the second case, where the electrode was more steep, only the
FDM gives acceptable results. This method is especially suitable for calculations
where the polarization is taken into account, since the computer time increases

TabLE I
Values of Current Densities on the Surface of Shaped Anode (B(x) = 2:4—1-8 cos (n.X/3'6))
and Cathode («(x) = 0) Calculated by Different Methods for Different N Values

FDM GM CM

x  p(x) N=19 N=7 N=17 N=11 N=1

g ine g Tine g TN Ing TIne g TN

0:0 060 2071 1:509 2:061 1-496 2:013 1-508 2-019 1-510  1-996 1-510
06 084 1293 1:226  1-331 1-221 1-196 1173 1-323 1227 1:335  1-225
12 1-50 0603 0842 0607 0838 0579 0809 0694 0844 0762 0833
1-8 240 0294 0611 0283 0610 0305 0615 0314 0613 0316 0608
24 330 0139 0486 0130 0490 0-171 0-502 0152 0489 0-127 0-490
30 396 0065 0425 0059 0431 0076 0434 0075 0428 0076 0-429
36 420 0043 0410 0038 0413 0052 0409 0050 0409 0052 0411

Comp. time 270 47 266 79 7
s
Comp.
memory 67 61 94 163 64
KBYTE
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only by 10% (ref.!). With GM and CM, if the polarization were taken into account,
the whole calculation would have to be repeated for several times and thus the
computer time would increase by an order of magnitude. The accuracy of GM
and CM could be increased by increasing substantially the number of functions,
however this would result in extreme requirements regarding the computer time
and memory.

The calculation was further carried out also for ﬂ(x) = 0-6 + 0-5x, i.e., for an elec-
trode which has in the points x = @ and x = b undefined derivatives f'(x) and
B"(x). Acceptable results were obtained only with FDM, whereas with GM and CM
oscillations of the potential and current density values took place owing to disconti-
nuities on the boundaries.

CONCLUSIONS

In the case of electrode shapes with continuous first and second derivatives in all
points of the surface, the three methods, FDM, GM, and CM are equivalent with
respect to the obtained results. In other cases ony the finite difference method can be

TasLe IT

Values of Current Densities on the Surface of Shaped Anode (f(x) = 6:0—5-4 cos (nX[3-6))
and Cathode (a(x) = 0) Calculated by Different Methods and for Different N Values

FDM GM CM

x  Px) N=19 N=17 N=1 N=11 N=17

g TiNe N TiNe INp TN g TiNe INp TiNa

00 060 2698 1-381  2-912  1-266 2-136 1-408 2:475 1-385 2:425 1-383
06 132 0660 1035 0701 1-037 0432 0973 1-070 1-033 0100 1-026
12 330 0157 0668 0113 0671 0-259 0642 0:665 0657 3-791 0-581
1-8 600 0025 0486 —0-005 0497 —0-059 0489 0190 0-481 —0-205 0-4i2
24 870 0001 0-394 —0-016 0-411 0073 0403 —0-213 0-392 —0-392 0-339
3-0 1068 0000 0350 —0-005 0-370 —0-048 0-353 —0:007 0-346 —0-044 0-296
36 11-40 0000 0337 —0-001 0-358 0-021 0-332 —0-001 0-333 —0-004 0-284

Comp. time 360 47 266 79 7
s
Comp.
memory 67 61 94 163 64
KBYTE
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successfully used. The latter has also the least requirements on the computer memory
and, if we consider the accuracy of the results, also on the computer time. At a con-
stant number of points in the grid, the computer time becomes longer with increasing
values of B'(x) and B’(x) (Tables I and II, results for N = 19). The collocation
method turned out to be most rapid one (with constant number of functions), how-
ever the results were worst: the current densities on the electrode surface f(x) oscil-
lated markedly and only after increasing the number of functions to 11 the results
were acceptable in the region where the electrodes were relatively close to each other.
Nevertheless, occasionally an opposite sign of the current density was obtained, which
did not correspond to the respective electrode and hence had no physical sense.
With the GM, a substantial part of the computer time is consumed in numerical
integration of Eqs (20) and (21). Therefore, only the finite difference method is recom-
mended for similar calculations.
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